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The dynamics of a quantum system which is weakly coupled with the quantum chaotic system
with a few degrees of freedom is discussed. It is shown that the quantum chaotic system acts like the
thermostat and causes the irreversible evolution of the system under interest. The closed equation
of the system evolution is obtained. The solutions of this equation are compared with the results of
the direct numerical simulation for two particular systems.
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I. INTRODUCTION

When we discuss the dynamics of a quantum system
under the influence of the thermostat (environment) we
imply that a thermostat possesses a number of properties
which allow us to derive the closed equation of motion
for the system under investigation. These properties are
the following [1]: (i) the total density matrix factorizes
in the direct product of the system density matrix and
the density matrix of the thermostat; (ii) the correlation
function of the thermostat decays with time. One justi-
fies these properties by assuming the thermostat to have
an infinite number of degrees of freedom and a continuous
energy spectrum.

In this paper we show that these assumptions are sur-
plus and, in fact, the thermostat can contain very few
degrees of freedom—in the limit, only one. The only con-
dition we have to satisfy is the condition of the chaotic
dynamics of the “thermostat.” It is shown in the paper
that this property is enough to justify both assumptions
(i) and (ii).

We begin the paper with a classical consideration of
the problem. Today the fact that the classical chaotic
system with a few degrees of freedom can act like a ther-
mostat is well known. The study of this problem goes
back to the paper of Fermi, Pasta, and Ulam [2] where
they looked for the process of “self-thermalization” in the
finite chain of the coupled nonlinear oscillators. It was
shown later in [3] that thermalization in this system takes
place if the condition of chaos is satisfied. The other ex-
ample of the thermostat with a finite number of degrees
of freedom is a multiatom molecule. We mention in par-
ticular the paper [4] where the absorption of the laser
radiation by the multiatom molecule has been studied.
It was shown that the finite number of the vibrational
modes affects the resonant mode almost in the same way
as it does the “ideal” thermostat with infinite number of
freedom degrees. Again, the condition of chaos must be
fulfilled. The similar problem of the energy absorption
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by the chaotic system is considered in [5]. Finally we
should mention the recent paper [6]. In this paper the
authors consider a two-dimensional chaotic map which
models the Brownian motion. The completely determin-
istic derivation of the Fokker-Planck equation for the dis-
tribution function of the Brownian particle is presented
and the exact expressions for the friction and diffusion
coefficients are obtained.

In Sec. II of the present paper we analyze the out-
lined problem from the general viewpoint, irrelevant to
any particular system. We obtain the closed equation of
motion for the system weakly coupled with the chaotic
system. Besides its own interest, this classical analysis
helps us to “illuminate the weak links” which will cause
the problems in the quantum consideration.

Our main interest is the case of the quantum thermo-
stat with a finite number of degrees of freedom. The
quantum analysis begins with the check of the proper-
ties (i) and (ii) for the quantum chaotic system [7]. This
is done in Sec. III. As a particular model of the quan-
tum chaotic system used in our numerical simulation, we
have chosen the “quantum standard map on the torus”
(SMT). Being coupled with some other system, this par-
ticular system is shown to effectively play the role of the
thermostat. We illustrate this in Sec. IV for the two-level
system and for the quantum kicked rotor. A comparison
between the analytical solution and the direct numerical
simulation of the composite system “system + thermo-
stat” is given.

II. CLASSICAL ANALYSIS

Let us label the Hamiltonian H, and the variables
gda = (Pa,Ts) of the system under interest by the index
a and by index b the Hamiltonian and the variables of
the chaotic system b (we refer below to the system b as
a thermostat). We additionally assume that interaction
between the system and the thermostat is weak:

Hi: = H, + Hy + €H;nt, Hine = VoVh, Hy is chaotic .

(1)

We want to obtain the closed equation for the system
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distribution function p,(ga,t) = [ dgvptot(ga;qs,t). In
the analysis we will follow the corresponding quantum
method well known in quantum mechanics [1].

Consider the arbitrary time to and let

Qa =Qa(taqa), a:a,b (2)

be the solution of the Hamiltonian equations for € = 0
corresponding to the initial condition Q. = g, for t = ¢,.
Using the substitution (2) we come to the distribution
function in the “interaction picture”

ﬁtot(Qa: Qb, t) = Ptot (qc (t, Qa), Qb(t, Qb)a t) (3)

J
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[ga = 4qa(t,Qa) is the inverse function to the function
(2)], which satisfies

Optot (t)/0t = e{Hine(t), prot(t)} - (4)

In Eq. (4) {} is the Poisson bracket over the new vari-
ables Q, and we write H;,; (t) to stress that in the new
variables the interaction term depends on time even in
the case when H;,; does not contain the time explicitly.
While € <« 1 we can use the iteration method to solve
Eq. (4). In second order over parameter € we have

to+At ~ to+At t - ~
ﬁtot(tﬂ + At) = ﬁtot(tﬂ) + 6/ dt{Hint (t)7ﬁtot(t0)} + 62 / dt/ dt,{Hint (t), {Hint(t,)v ﬁtot(to)}} . (5)
to to to

Now we integrate both part of Eq. (5) over the variables of the thermostat. Having in mind that {} = { }o + { }» and

J dQs{ }» = 0, we obtain, from Eq. (5),

to+At - to+At t - -
Palto + At) = palto) + ¢ / dt{V(t), RO (1)} + ¢ / dt / dt{Va(t), {Va(t'), RD (2, ¢)}} (6)

to

where

RO (1) = / day Vi (t) rot (to),
()
RO (t,¢') = / das V(&) Vo(t))Frot o) -

At this stage it is tempting to assume (as it is often
done) that ptot(ga;s @by t) = pa(qa,t)ps(gs,t) for arbitrary
t. But there are no reasons for this conjecture and in the
general case it does not hold. We note, however, that
for our purpose we do not need such an assumption. The
problem can be settled by the theorem which follows from
the mixing property of the chaotic dynamics.

Let G(gy) be an arbitrary function of the variables g,
H.;,; = Hy, + Hp, and the dynamics of the system b is
chaotic. Then

tliglo/deG(Qb)Ptot(‘Iaa‘Ibat) = (G(g6))5Pa(ast) » (8)
where pa(ga,t) = [dgbptot(da;qs,t) and (G(gs))s =
J 446G (gb)Pu(gp, ). In the case of the system with a con-
fined chaotic region the average (G(gs))s coincides with
the average ((G(gs))) over the invariant measure of the

system b which coincides, in most cases, with the average
over the chaotic part of the system’s phase volume I':

(Gla)s = (G@N) = F § daGla) . (9)
We note also the consequence from Eq. (8):
Jim (F(ga)G(@))eot = (F(2a))alGl@))s . (10)

The numerical illustration of the properties (8) and

0

(10) is given in Fig. 1(a) for the particular system with
the Hamiltonian

2
H;,,s = H,+ H,, H, = 222 + K, cos Ty gé(t —n),

0 < zq,pa <27 (11)

o o o
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FIG. 1. The dynamics of the averages for SMT. The solid

line shows (sin?(p, /2) sin?(ps/2))tot and the dashed line corre-

sponds to (sin®(pa/2))a(sin?(ps/2))s. Parameters: K, = 0.5,

K, =5,€=0, (a) k=0 (classical case), (b) A= 27/512, and
(c) h=2m/64.
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(the standard map on the torus). The values Ky = 5
and K, = 0.5; thus the dynamics of the system b
is chaotic while the dynamics of the system a is reg-
ular [8]. The solid line shows (F(q.)G(gs))tot, Where
F(qa) = sin?(p,/2) and G(gs) = sin®(pp/2). The dashed
line shows (F'(¢2))a(G(gs)s- The initial distribution func-
tion was chosen in the form

peot(0) = 5-16(pa = M5 (p1) + 6(pa)6(ps — )] . (12)

It is seen that, in spite of p;ot(0) not allowing the fac-
torization [ptot(0) # pa(0)ps(0)], the dashed line rapidly
converges to the solid line, as predicted by Eq. (10).

We come back to Eq. (7). The theorem (8) states that
for to >1

Rt(ll) (t)= (‘./'b(t))bﬁa (tO) )
(13)

RO (t,t)= (Va() Vo(t') obato) -

Due to the chaotic dynamics of the system b the correla-
tion function S(t,t') = (Vp(t)Ve(t'))s rapidly decays -

(Va(6)V(¢))s =~ (Vi) exp(— |t = ' | /7e) (14)

and under the quite general condition (V3(t))s = 0.
Now we assume that the characteristic frequency of the
motion of the system a is much smaller than the in-
verse correlation time 7.. It means that the function
Vu(t) in Eq. (6) is a slowly varying function on the
time scale of 7.. Using this assumption and taking
[Pa(t+At)—pqa(t)]/ At = Opa /Ot we obtain the differential
equation for the distribution function in the “interaction
picture”: 9p4(t)/0t = ez(Vbz)Tc{Va(t), {Va(t),ﬁa(t)}}.
Finally, coming back to the old variables g,, we have the
required closed equation for the system dynamics under
the influence of the thermostat

apgt(t) = {Ha, pa(t)} + D{Va(t), {Va(t), pa(t)}},
D= eXV)r . (15)

Equation (15) is an irreversible equation. It means that
the system a irreversibly loses information about its ini-
tial state. This information leaks into the chaotic system
b which, due to the chaotic dynamics, has infinite “in-
formational capacity.” In this sense there is no difference
between a chaotic system with one degree of freedom and
the heat bath (the infinite ensemble of the linear oscilla-
tors); both possess infinite informational capacity. This
justifies the use of the term “thermostat” for the system
b.

One remark concerning the feedback is in order. As
can easily be seen, the method used neglects the back
action of the system on the thermostat. For our partic-
ular thermostat this approximation is well justified, be-
cause a small perturbation of the “standard map on the
torus” with K > 1 changes neither its type of motion nor
its equilibrium distribution function (invariant measure),
which is py(gs) = 1/(27)%. We note, however, that there
are the chaotic thermostats which change considerably
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their invariant measure under an external perturbation.
(The example of such a thermostat is considered in [6].)
In this case Eq. (15) will contain an additional relax-
ation (friction) term in its right-hand side. In our case
this term is negligibly small.

III. QUANTUM ANALYSIS

The consideration of the problem in the quantum case
completely repeats all stages of the classical analysis.
The only differences are that the distribution function
is substituted by the density matrix and the Poisson
bracket is substituted by the commutator. Therefore,
all we have to do is to check the property of the factor-
ization (8) and the property of the short memory (14) of
the quantum chaotic system.

As a model we choose the quantum counterpart of the
system (11)

H=H,+ By + eHins,

-2
g — Pa - =
o= B Koz ) (@b, (19

Hini = cosz, cosa:bz&(t -n), 0<xzy<2m.
n

The condition of the periodicity on momentum will be
satisfied if we choose i = 2w /N. Therefore, we consider
dynamics of the two N-level quantum systems. The basis
functions of every system obviously are

|p) = (21r)_1/2exp(ipx), z=2mj/N, 1<j<N,
a7)

and p | p) = hp | p), 1 < p < N. For the purpose of the
numerical simulation it is also convenient to choose N as
a power of 2 [9].

A. Factorization in the quantum case

To avoid misunderstanding we remind the reader that
by the “factorization” we mean the fulfillment of the
conditions (8) and (10) but not the actual factoriza-
tion of the total density matrix, which in the general
case [excluding the case of the special initial condition
Ptot(0) = pa(0) ® pp(0)] never takes place.

Figures 1(b) and 1(c) illustrate the factorization prop-
erty of the quantum chaotic system (16) for N = 64 and
N = 512. The solid line shows (Fé)tog, where F' =
sin?(a/2), G = sin’($5/2), and ()ior = Tr[prot(t) - ]-
The dashed line shows (F)4(G)s, where {)o = Tr[pq - - ]
and po = Trgxa|ptot(t)] are the reduced density matrices
of the system a and b. The initial density matrix was
chosen in a form which does not allow the factorization

pro(®) = 51 11 Lo @ | N/2)
X(N/2 s + | N/2)(N/21a ® [ {1 ]5) . (18)
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It is seen that in the quantum case the factorization also
takes place, but Eq. (10) holds up to finite accuracy.

The reason by which the factorization takes place in
the quantum case is in the specific dynamics of the wave
vector | 9p(t)) of a quantum chaotic system; for almost
all initial conditions and almost all time moments one can
consider the wave vector | 1(t)) of the chaotic system as
arandom vector [10]. This quantum manifestation of the
underlying classical chaos makes the following statement
valid. Given the arbitrary operator G we have

We(0) | G | 94(8) = xTG) + OU/VE),  (19)

when | #,(0)) =| ¥4(0)) and ($(t) | G | %4(t)) =
O(1/VN) if | ¥5(0)) #| ¥54(0)). [It is easy to see that
Eq. (19) is the quantum analoq of Eq. (9).] Using Eq.
(19) we obtain that Eq. (7) in the quantum case is kept
up to the accuracy O(1/v/N) ~ VA and therefore the
quantum results [Figs. 1(b) and 1(c)] converge to the
classical one [Fig. 1(a)] approximately as v/.

It is interesting to note that the accuracy up to which
factorization holds in the quantum case greatly increases
if the systems a and b are coupled and the coupling pa-
rameter satisfies the condition € > €., ~ f [see Figs. 2(b)
and 2(c)]. This result shows the importance of the back
action of the system on the thermostat in the quantum
case. The physical reason for this phenomenon is the
destruction of the quantum interference by an external
stimulus. It has been shown in a recent paper [14] that
the random perturbation converts the quantum dynam-
ics of a semiclassical system into the classical dynamics,
provided the intensity € of the perturbation is more than
€cr ~ B [15]. In our case the feedback is definitely not
random. In fact, it consists of the regular perturbation
exerted by the system a itself (the system a is assumed to

(a) i

(b)

o
=

=4
w

<FG> , <F><G>
Q o
— N

=3
o

0 10 20 30 40 50
t

FIG. 2. The same as in Fig. 1, but € # 0: (a) e = 1/64, (b)
€ =1/64, and (c) e = 1/8.
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have regular dynamics for ¢ = 0) and quasirandom per-
turbation originated by the thermostat b and returned
back to it after some modification made by the system
a. Nevertheless, as Figs. 2(b) and 2(c) show, even such
a perturbation can force the quantum chaotic system to
behave in a more classical way. We find similar results
in [5] where the dynamics of a specific quantum system
coupled with a finite number of the linear oscillators is
studied.

To avoid any misunderstanding we stress that the effect
discussed in the preceding paragraph is a pure quantum
effect. In the classical case, as mentioned in Sec. III, the
back action of the system on our thermostat is almost
irrelevant [compare Figs. 1(a) and 2(a)].

B. Correlation function of the quantum thermostat

In this subsection we discuss the “memory” property
of the quantum chaotic system. The particular interest
is the correlation function

S(r,t) = Tro[Uy (1) VoUs(7) Vs (2)],
(20)

) =exo [ | o )i |

which corresponds to the classical correlator (Vi(t +
7)Vs(t))s in Eq. (13). The behavior of S(r,t) for 7 =
1,2,9 is shown in Fig. 3 for £ = 2x/64. The solid line
corresponds to | S(7,t) | and the dashed line corresponds
to the imaginary part of S(7,t). Figure 4 shows the func-
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FIG. 3. The behavior of the correlation function S(7,t) for
quantum SMT (K, = 5, i = 27/64). The solid line shows
| S(r,t) | and the dashed line shows the imaginary part of
S(r,1).
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0.6

S(7)

FIG. 4. The behavior of the correlation function S(7) (solid
line). The parameters are the same as for Fig. 3. The average
involves 25 kicks.

tion S(7) = | S(7,t) |, where the bar denotes the aver-
age over t. It is seen that the correlation function S(7)
rapidly decays up to some finite value, which tends to
zero if A — 0. For fixed £ the level of the rest correlation
can be reduced if there is the coupling between the sys-
tems, i.e., if we take into account the back action of the
system on the thermostat (see dashed line in Fig. 4).

One can argue that the level of the rest correlation
cannot always be small. Actually, from the mathemati-
cal viewpoint the dynamics of the correlation function is
the quasiperiodic process with the frequencies given by
the quasienergy frequencies. Therefore, there is some
quasiperiod T in the behavior of S(7,t). The ques-
tion is how large is this quasiperiod? The simplest es-
timate shows that the quasiperiod grows exponentially
with the number of the levels of the system b. In
fact, for the considered system we have N values of the
quasienergies and therefore approximately N2/2 differ-
ent quasienergy frequencies w;. Because of the under-
lying classical chaos these frequencies are randomly dis-
tributed over the whole frequency interval 0 < w; < 27
[11]. We need to estimate the quasiperiod of a function of
the type f(t) = ), a; cos(w;t). Let us consider the most
unfavorable case when all quasifrequencies are rational:
w; = 27r;/¢;; Ti,q; are integer numbers r; < ¢;. Then
the function F(t) is periodic with the period T = []; ¢:.
(The randomness of w; prevents the presence of the equal
gi.) While all g; > 1 the period T grows exponentially
with N: T ~ exp N ~ exp(1/h).

Thus, for small % (large N) the recurrence time T is
very large and, in addition, one can increase it several
times by taking into account the back action of the sys-
tem. However, we cannot completely ignore the fact that
there is a recurrence time for the quantum correlation
function. (The finite recurrence time means the finite in-
formational capacity of the quantum thermostat.) This
fact causes the fundamental restriction on the time dur-
ing which the closed equation for the system a [see Eq.
(21) below] is valid.

C. Equation of the motion

The numerical results presented above show that the
quantum chaotic system possesses to some extent both
the factorization property and the property of short
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memory. These properties allow us to obtain the closed
equation for the dynamics of a system weakly coupled
with the chaotic quantum system. This equation obvi-
ously has the following form:

6/35t(t) = LB pe) — oy [Va(8), Va(0), pu(],

D = e25(0)7. . (21)

Of course, Eq. (21) is approximate. It can be well justi-
fied only in the limit case, when the thermostat is classi-
cal. In other words, the number of levels IV of the system
b (more precisely, the number of level participating in the
dynamics) should be infinite. Our aim is, however, the
case of the finite N (finite #). Given the above ana-
lytical estimates predicts Eq. (21) to hold with accuracy
~ N~1/2 during the time ~ exp N. We remind the reader
that this estimate was obtained for the case ¢ — 0. For
“large” € (€ > €. ~ k) the feedback of the system makes
the thermostat behave in a more classical way and the ex-
tent of the validity of Eq. (21) can be greatly enhanced.
Preliminary estimates for this case gives the accuracy
~ (NM)~'/2 during the time ~ exp(NM), where by M
we denote the number of levels of the system a partici-
pating in the dynamics. In the next section we illustrate
the extent of the validity of Eq. (21) for finite 4 for two
particular systems H,.

IV. THE DYNAMICS OF A QUANTUM SYSTEM
COUPLED WITH A CHAOTIC THERMOSTAT

A. Two-level system

We consider the simplest case of the Eq. (21) when the
system a is a two-level system

Ho=hw|2)2], Va=|2)1|+|1)2]. (22)

We choose the Hamiltonian of the composed system in
the form

Hye = H, + Hy + €V, cos zy, Z o(t — n),
(23)
A 132
H, = ?b + Kbcosa:bZJ(t —-n).

We want to compare the case of the quantum thermostat
with the case of the classical thermostat. In the latter
case, as mentioned above, Eq. (21) is well justified and
its solution has the form [12]

P1,2(t) = p1,2(0) exp(—vt — iwt),
(24)
= 62/h2, o= (wz +72)1/2 .
Here we discuss the numerical methods. In the case of

the classical thermostat we consider instead of Eq. (21)
the following stochastic Schrédinger equation:
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iﬁ% | %a(t)) = |Ha + €V, cos zp(t) zﬂ:&(t —n)| | ¥a(t)),

(25)

where z,(t) satisfies the classical equation of the motion.
Then we obtain the density matrix of the system a by
averaging the pure state | ¥4(t))(¥4(t) | over the initial
distribution function of the classical thermostat. In the
case of the quantum thermostat we solve the Schrodinger
equation for the total wave function. Then we obtain
the density matrix of the system a by tracing the total
density matrix | ¥t (t))(¥eot(t) | over the variables of the
thermostat.

Figure 5(a) shows the dynamics of the real part of
p1,2(t) in the case of the classical thermostat. The param-
eters are w = 0.3, K = 5.0, and ¢/ = 0.32. The initial
density matrix of the two-level system was chosen in the
form pa(0) = 3( 1M1 | + | 22 | + | 1 | + | 2)(1 |)
and the initial distribution function of the thermostat
Pb(Pb, b, 0) = %J(pb — ). It is seen that the behavior
of pa(t) obeys the formula (24) with v ~ 0.08.

Figure 5(b) shows the case of the quantum thermostat
(R = 27 /2048) for two different initial j;0:(0):

peat(0) = (11| +]2)(2 | + | 1)
x(2 [+ 12){1 )a® | N/2(N/2

(solid line) and

(26)

)
i

(b)
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FIG. 5. The dynamics of the two-level system coupled with
(a) the classical SMT and (b) and (c) the quantum SMT for
h = 27/2048. Parameters: w = 0.3, (a) and (b) K, = 5, and
(c) Ky = 0.5 and €/h = 0.32. Two curves in (b) correspond
to the different choice of the initial condition: pior = pa ® Ps,
solid line; peor # Pa ® Pb, dashed line.
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Prot(0) = %[(I DA+ 12)2 ]+ [1)(2)a® | N/2)
X(N/2 o+ [ 2)(L]a @[ 1)(1 s (27)

(dashed line). The similar behavior of both lines con-
firms again that in the case of the chaotic thermostat the
requirement for = P ® Pp is surplus. From a comparison
of the cases (a) and (b) it is seen that the main difference
between the classical and the quantum thermostat is the
presence of the rest oscillation in the quantum case. We
have found the level of the rest oscillation to be small
during all times of the consideration, which was 8000
kicks.

To conclude this subsection we give numerical evidence
that the condition of the chaotic dynamics of the thermo-
stat is absolutely necessary. Figure 5(c) shows the case
K = 0.5 when the dynamics of the system b is known to
be regular. It is seen that there is no decay of p; 2(t) in
this case.

B. Quantum kicked rotor

Now we proceed to the dynamics of the kicked rotor
under the influence of the thermostat:

52

H, = % +Kacosa:a;6(t— n),

(28)

H, = <y + Kycosx Zé(t—n)
b= b b A ;

ﬁint = €COS T4 COS a:bz&(t —n).

n

In ﬂb we introduce the additional parameter x, which
allows us to change independently the semiclassical pa-
rameters of both systems, which are % and xh.

First we discuss the solution of Eq. (21) for K, > 1.
The solution of Eq. (21) for the kicked rotor strongly
depends on the value of the parameter . For ¢ = 0
the quantum kicked rotor exhibits the well known phe-
nomenon of the suppression of the diffusion [13]. It
means that for any finite 7 the mean energy of the
rotor E(t) = 3Tr[p2pa(t)] follows the classical behav-
ior E(t) ~ t only a finite time and then the energy
growth is suppressed, as illustrated in Fig. 6 (K, = 2
and h/2m = 21/2048). For ¢ # 0 the dynamics of the
system becomes closer to the classical one and coincides
with that if € > €. ~ £k [9,14]. This case is depicted in
Fig. 6 by the dashed line, which shows the result of the
numerical simulation of the quantum kicked rotor under
the influence of the classical thermostat.

The solid line in Fig. 6 shows the case of the quan-
tum thermostat for k = 16/21. For this value of x the
thermostat contains only N = 128 levels, but we see the
excellent coincidence with the case of the classical ther-
mostat. This coincidence is even better than it was for
the two-level system where we took N = 2048. The rea-
son for this is, of course, the back action of the system
on the thermostat. If the back action is almost irrelevant
in the case of the two-level system, it is very important
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75

Et)

(e=0»
25

FIG. 6. The dynamics of the mean energy of the quantum
kicked rotor coupled with the classical SMT (dashed line) and
the quantum SMT (solid line). Parameters: Ko = 2, Kp = 5,
k/2m = 21/2048, ¢ = 1/16, and x = 16/21 in the case of the
quantum SMT.

in the present case. It helps to validate the properties (i)
and (ii) of the thermostat, which are crucial for validity
of Eq. (21).

The result depicted in Fig. 6 is consistent with the
numerical results reported in [9], where the dynamics of
two coupled kicked rotors has been studied. It has been
shown in [9] that the weak coupling between the rotors
can greatly enhance the time of the correspondence be-
tween their quantum and classical dynamics [16]. Here
we note that this phenomenon is not a particular feature
of the kicked rotor, but has a general validity. As already
mentioned, an arbitrary semiclassical system, whose dy-
namics obeys the irreversible Eq. (21), gets the transition
to the classical dynamics if € > €., ~ £k [14]. Therefore,
in the case of the quantum thermostat (i.e., in the case
studied in [9], where any of two rotors can be considered
as the thermostat) the time of the correspondence is de-
fined primarily by the validity time of Eq. (21). This
time scales as

T o exp(1/K) (29)

and it considerably exceeds the correspondence time of
an isolated semiclassical system

Tx1/h* a>0. (30)
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V. CONCLUSION

The numerical results presented show that the quan-
tum chaotic system with a few degrees of freedom can
act like the thermostat. Being coupled with some other
quantum system it yields a “random” perturbation of the
system and causes the irreversible evolution of the system
according to Eq. (21).

A multiatom molecule might be the system where the
discussed phenomenon is important. In particular, it
might concern the problem of the suppression of the tun-
neling between the left and right isomers of the molecule
when the mass of the molecule is increased. In fact,
the more complex the molecule, the easier it satisfies the
condition of chaos. Therefore, for the complex molecule
the internal vibrational dynamics should be for certain
chaotic. This chaotic motion influences the relevant tun-
neling degree of freedom (the double well system is usu-
ally used as the model) the way described above and
causes the suppression of the tunneling, which is known
to be a pure coherent effect.

The other physical application of the discussed phe-
nomenon is the problem of the quantum-classical cor-
respondence for the dynamics of the mesoscopic parti-
cle. This problem has been studied in [14] and the for-
mulation of the problem considered there is very simi-
lar to that in the present paper: we have the Hamilto-
nian a, which is the Hamiltonian of the gravity center of
the mesoscopic particle in some potential field V (r), the
Hamiltonian b, which is the Hamiltonian of the internal
degrees of freedom of the particle, and the interaction
between systems a and b, which is given by the term
H;,: =d-VV(r), where d is the dipole moment of the
particle. It has been shown in [14] that under the assump-
tions (i) and (ii) about the internal motion one easily
gets the correspondence between quantum and classical
dynamics of the mesoscopic particle. In the cited paper
these assumptions were justified by considering the par-
ticle’s mass of the order of 0.1 g (~ 10?2 internal degrees
of freedom). The numerical results presented in Sec. IV
show that there are the cases when we do not need such
a huge number of the internal degrees of freedom to jus-
tify the assumptions (i) and (ii). Thus we can expect
the quantum-classical correspondence even for a particle
with few atoms.
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